Part Number Hot Search : 
MAX6955 001547 74VHC 19200000 VHZ555 DTV32D 1N5405 IRF530L
Product Description
Full Text Search
 

To Download BTS712N110 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Smart High-Side Power Switch
Smart High-Side Power Switch
PROFET BTS712N1
Data Sheet
Rev 1.3, 2010-03-16
Automotive Power
Smart High-Side Power Switch BTS712N1
Smart Four Channel Highside Power Switch
Features
* Overload protection * Current limitation * Short-circuit protection * Thermal shutdown * Overvoltage protection (including load dump) * Fast demagnetization of inductive loads * Reverse battery protection1) * Undervoltage and overvoltage shutdown with auto-restart and hysteresis * Open drain diagnostic output * Open load detection in OFF-state * CMOS compatible input * Loss of ground and loss of Vbb protection * Electrostatic discharge (ESD) protection
Product Summary Overvoltage Protection Operating voltage active channels: On-state resistance RON Nominal load current ,/120 Current limitation ,/6&U
Vbb(AZ) 43 V Vbb(on) 5.0 ... 34 V two parallel four parallel one 200 100 50 m 1.9 2.8 4.4 A 4 4 4 A
P-DSO-20
PG-DSO20
Application
* C compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads * All types of resistive, inductive and capacitive loads * Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions. Pin Definitions and Functions Pin 1,10, 11,12, 15,16, 19,20 3 5 7 9 18 17 14 13 4 8 2 6 Symbol Function Vbb Positive power supply voltage. Design the wiring for the simultaneous max. short circuit currents from channel 1 to 4 and also for low thermal resistance IN1 Input 1 .. 4, activates channel 1 .. 4 in case of IN2 logic high signal IN3 IN4 OUT1 Output 1 .. 4, protected high-side power output OUT2 of channel 1 .. 4. Design the wiring for the OUT3 max. short circuit current OUT4 ST1/2 Diagnostic feedback 1/2 of channel 1 and channel 2, open drain, low on failure ST3/4 Diagnostic feedback 3/4 of channel 3 and channel 4, open drain, low on failure GND1/2 Ground 1/2 of chip 1 (channel 1 and channel 2) GND3/4 Ground 3/4 of chip 2 (channel 3 and channel 4)
Pin configuration (top view) Vbb GND1/2 IN1 ST1/2 IN2 GND3/4 IN3 ST3/4 IN4 Vbb 1 2 3 4 5 6 7 8 9 10
*
20 19 18 17 16 15 14 13 12 11
Vbb Vbb OUT1 OUT2 Vbb Vbb OUT3 OUT4 Vbb Vbb
1)
With external current limit (e.g. resistor RGND=150 ) in GND connection, resistor in series with ST connection, reverse load current limited by connected load.
Data Sheet
2
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Block diagram
Four Channels; Open Load detection in off state;
9 EE
9ROWDJH VRXUFH 9 /RJLF 9ROWDJH VHQVRU
2YHUYROWDJH SURWHFWLRQ /HYHO VKLIWHU 5HFWLILHU &KDUJH SXPS &KDUJH SXPS
&XUUHQW OLPLW
*DWH SURWHFWLRQ
&KDQQHO
/HDGIUDPH
/LPLW IRU XQFODPSHG LQG ORDGV 2SHQ ORDG 6KRUW WR 9EE GHWHFWLRQ &XUUHQW OLPLW *DWH SURWHFWLRQ
287

,1 ,1 67
7HPSHUDWXUH VHQVRU
(6'
/RJLF
*1'
/HYHO VKLIWHU 5HFWLILHU
/LPLW IRU XQFODPSHG LQG ORDGV 2SHQ ORDG 6KRUW WR 9EE GHWHFWLRQ
&KDQQHO
287
/RDG
7HPSHUDWXUH VHQVRU
6LJQDO *1' &KLS
&KLS
/RDG *1' 9 EE
/HDGIUDPH
/RJLF DQG SURWHFWLRQ FLUFXLW RI FKLS HTXLYDOHQW WR FKLS
,1 ,1 67
&KDQQHO
287
&KDQQHO
287
/RDG
*1'
352)(7
6LJQDO *1' &KLS
/RDG *1'
&KLS /HDGIUDPH FRQQHFWHG WR SLQ
Data Sheet
3
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Maximum Ratings at Tj = 25C unless otherwise specified Parameter Supply voltage (overvoltage protection see page 4) Supply voltage for full short circuit protection Tj,start = -40 ...+150C Load current (Short-circuit current, see page 5) Load dump protection2) VLoadDump = UA + Vs, UA = 13.5 V RI3) = 2 , td = 200 ms; IN = low or high, each channel loaded with RL = 7.1 , Operating temperature range Storage temperature range Power dissipation (DC)5 Ta = 25C: Ta = 85C: (all channels active) Inductive load switch-off energy dissipation, single pulse Vbb = 12V, Tj,start = 150C5), IL = 1.9 A, ZL = 66 mH, 0 one channel: IL = 2.8 A, ZL = 66 mH, 0 two parallel channels: IL = 4.4 A, ZL = 66 mH, 0 four parallel channels:
see diagrams on page 9
Symbol
Values 43 34 self-limited 60 -40 ...+150 -55 ...+150 3.6 1.9
Unit V V A V C W
Vbb Vbb IL VLoad Tj Tstg Ptot
4) dump
EAS
150 320 800 1.0 -10 ... +16 2.0 5.0
mJ
Electrostatic discharge capability (ESD) (Human Body Model) Input voltage (DC) Current through input pin (DC) Current through status pin (DC)
see internal circuit diagram page 8
VESD VIN IIN IST
kV V mA
Thermal resistance junction - soldering point5),6) junction - ambient5)
each channel: one channel active: all channels active:
Rthjs Rthja
16 44 35
K/W
2)
3) 4) 5)
Supply voltages higher than Vbb(AZ) require an external current limit for the GND and status pins, e.g. with a 150 resistor in the GND connection and a 15 k resistor in series with the status pin. A resistor for input protection is integrated. RI = internal resistance of the load dump test pulse generator VLoad dump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70m thick) copper area for Vbb connection. PCB is vertical without blown air. See page 14
Data Sheet
4
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Electrical Characteristics
Parameter and Conditions, each of the four channels
at Tj = 25 C, Vbb = 12 V unless otherwise specified
Symbol
Values min typ max
Unit
Load Switching Capabilities and Characteristics On-state resistance (Vbb to OUT) each channel, Tj = 25C: RON IL = 1.8 A Tj = 150C: two parallel channels, Tj = 25C: four parallel channels, Tj = 25C: Nominal load current one channel active: two parallel channels active: four parallel channels active: 5), T = 85C, T 150C Device on PCB a j Output current while GND disconnected or pulled up; Vbb = 30 V, VIN = 0, see diagram page 9 Turn-on time to 90% VOUT: Turn-off time to 10% VOUT: RL = 12 , Tj =-40...+150C Slew rate on 10 to 30% VOUT, RL = 12 , Tj =-40...+150C: Slew rate off 70 to 40% VOUT, RL = 12 , Tj =-40...+150C: Operating Parameters Operating voltage7) Undervoltage shutdown Undervoltage restart
--
165 320 83 42 1.9 2.8 4.4 -200 200 ---
200 400 100 50 --
m
IL(NOM)
1.7 2.6 4.1 -80 80 0.1 0.1
A
IL(GNDhigh) ton toff
dV/dton -dV/dtoff
10 400 400 1 1
mA s
V/s V/s
Tj =-40...+150C: Tj =-40...+150C: Tj =-40...+25C: Tj =+150C: Undervoltage restart of charge pump see diagram page 14 Tj =-40...+150C: Undervoltage hysteresis Vbb(under) = Vbb(u rst) - Vbb(under) Overvoltage shutdown Tj =-40...+150C: Overvoltage restart Tj =-40...+150C: Overvoltage hysteresis Tj =-40...+150C: Overvoltage protection8) Tj =-40...+150C: I bb = 40 mA
Vbb(on) Vbb(under) Vbb(u rst) Vbb(ucp)
Vbb(under)
5.0 3.5 ---34 33 -42
---5.6 0.2 --0.5 47
34 5.0 5.0 7.0 7.0 -43 ----
V V V V V V V V V
Vbb(over) Vbb(o rst) Vbb(over) Vbb(AZ)
7) 8)
At supply voltage increase up to Vbb = 5.6 V typ without charge pump, VOUT Vbb - 2 V see also VON(CL) in circuit diagram on page 8.
Data Sheet
5
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Parameter and Conditions, each of the four channels
at Tj = 25 C, Vbb = 12 V unless otherwise specified
Symbol
Values min typ max ----180 160 0.35 1.2 300 300 0.8 2.8
Unit A
Standby current, all channels off Tj =25C: Ibb(off) VIN = 0 Tj =150C: 9), V = 5V, Operating current IN Tj =-40...+150C IGND = IGND1/2 + IGND3/4, one channel on: IGND four channels on:
mA
Protection Functions10) Initial peak short circuit current limit, (see timing diagrams, page 12) each channel, Tj =-40C: IL(SCp) 5.5 9.5 13 4.5 7.5 11 Tj =25C: 2.5 4.5 7 Tj =+150C: two parallel channels twice the current of one channel four parallel channels four times the current of one channel Repetitive short circuit current limit, Tj = Tjt each channel IL(SCr) -4 --4 -two parallel channels -4 -four parallel channels
(see timing diagrams, page 12)
A
A
Initial short circuit shutdown time
Tj,start =-40C: toff(SC) Tj,start = 25C: VON(CL) Tjt Tjt
-Vbb -VON
---150 ----
48 29 47 -10 -610
-----32 --
ms
(see page 10 and timing diagrams on page 12)
Output clamp (inductive load switch off)11) at VON(CL) = Vbb - VOUT Thermal overload trip temperature Thermal hysteresis Reverse Battery Reverse battery voltage 12) Drain-source diode voltage (Vout > Vbb) IL = - 1.9 A, Tj = +150C Diagnostic Characteristics Open load detection current Open load detection voltage
V C K V mV
IL(off) Tj =-40..+150C: VOUT(OL)
-2
30 3
-4
A V
9)
Add IST, if IST > 0 Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. 11) If channels are connected in parallel, output clamp is usually accomplished by the channel with the lowest VON(CL) 12) Requires a 150 resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 8).
10)
Data Sheet
6
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Parameter and Conditions, each of the four channels
at Tj = 25 C, Vbb = 12 V unless otherwise specified
Symbol
Values min typ max
Unit
Input and Status Feedback13) Input resistance
(see circuit page 8)
Tj =-40..+150C: Tj =-40..+150C:
RI VIN(T+) VIN(T-)
2.5 1.7 1.5 -1 20 --
3.5 --0.5 -50 220
6 3.5 --50 90 --
k V V V A A s
Input turn-on threshold voltage Input turn-off threshold voltage
Tj =-40..+150C:
Input threshold hysteresis Off state input current Tj =-40..+150C: On state input current Tj =-40..+150C: Delay time for status with open load
(see timing diagrams, page 12)
VIN(T) VIN = 0.4 V: IIN(off)
VIN = 5 V: IIN(on) td(ST OL3)
Status output (open drain) Zener limit voltage Tj =-40...+150C, IST = +1.6 mA: VST(high) Tj =-40...+25C, IST = +1.6 mA: VST(low) ST low voltage Tj = +150C, IST = +1.6 mA:
5.4 ---
6.1 ---
-0.4 0.6
V
13)
If ground resistors RGND are used, add the voltage drop across these resistors.
Data Sheet
7
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Truth Table
Channel 1 and 2 Channel 3 and 4 (equivalent to channel 1 and 2)
Normal operation
Chip 1 Chip 2
IN1 IN3
IN2 IN4
OUT1 OUT3
OUT2 OUT4
ST1/2 ST3/4 BTS 711L1
ST1/2 ST3/4 BTS 712N1 H H H H L H H L H H L15) H H L15) H H H L L H L H L H
Open load
Channel 1 (3)
L L H H L L H L H X L L H L H X L X H L H X X X
L H L H L H X L L H L H X L L H L H X X X L H X
L L H H Z Z H L H X H H H L H X L L L L L X X L
L H L H L H X Z Z H L H X H H H L L L X X L L L
H H H H H(L14)) H L H(L14)) H L L15) H H(L16)) L15) H H(L16)) H L L H L H L H
Channel 2 (4)
Short circuit to Vbb
Channel 1 (3)
Channel 2 (4)
Overtemperature
both channel
Channel 1 (3) Channel 2 (4) Undervoltage/ Overvoltage
L = "Low" Level H = "High" Level
X = don't care Z = high impedance, potential depends on external circuit Status signal valid after the time delay shown in the timing diagrams
Parallel switching of channel 1 and 2 (also channel 3 and 4) is easily possible by connecting the inputs and outputs in parallel (see truth table). If switching channel 1 to 4 in parallel, the status outputs ST1/2 and ST3/4 have to be configured as a 'Wired OR' function with a single pull-up resistor.
Terms
9 ,EE EE , ,1 , ,1 , 67 9 ,1 9,1 967 /HDGIUDPH ,1 ,1 9EE 287 352)(7 &KLS 287 9 21 9 21 , / , / 9 287 , *1' 9287 /HDGIUDPH , ,1 , ,1 , 67 9 ,1 9,1 967 ,1 ,1 9EE 287 352)(7 &KLS 287 9 21 9 21 , / , / 9 287 , *1' 9287
67 *1' 5 *1'
67 *1' 5 *1'
Leadframe (Vbb) is connected to pin 1,10,11,12,15,16,19,20 External RGND optional; two resistors RGND1/2 ,RGND3/4 = 150 or a single resistor RGND = 75 for reverse battery protection up to the max. operating voltage.
14) 15)
With additional external pull up resistor An external short of output to Vbb in the off state causes an internal current from output to ground. If RGND is used, an offset voltage at the GND and ST pins will occur and the VST low signal may be errorious. 16) Low resistance to V may be detected by no-load-detection bb
Data Sheet
8
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Input circuit (ESD protection), IN1...4
,1 5 ,
Overvoltage protection of logic part
GND1/2 or GND3/4
9 EE 9
(6'=' , *1'
,
,1
5, /RJLF
=
,
5 67
,1 67 9
ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).
= *1'
5 *1'
6LJQDO *1'
Status output, ST1/2 or ST3/4
9
VZ1 = 6.1 V typ., VZ2 = 47 V typ., RI = 3.5 k typ., RGND = 150
5 6721
67
Reverse battery protection
9
9EE
*1'
(6' ='
5 67
,1 67
5,
/RJLF
ESD-Zener diode: 6.1 V typ., max 5.0 mA; RST(ON) < 380 at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).
287
3RZHU ,QYHUVH 'LRGH
*1'
Inductive and overvoltage output clamp,
OUT1...4
9EE 9= 9 21 287
5 *1'
6LJQDO *1'
5/
3RZHU *1'
RGND = 150 , RI = 3.5 k typ,
Temperature protection is not active during inverse current operation.
Open-load detection, OUT1...4
OFF-state diagnostic condition: VOUT > 3 V typ.; IN low
352)(7
3RZHU *1'
VON clamped to VON(CL) = 47 V typ.
2))
, /2/ 9 287
/RJLF XQLW
2SHQ ORDG GHWHFWLRQ
6LJQDO *1'
Data Sheet
9
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
GND disconnect
(channel 1/2 or 3/4)
9 ,EE ,1 ,1 67 9 9 9 ,1 ,1 67 9EE 287 352)(7 287 *1' 9 *1'
Inductive load switch-off energy dissipation
( EE ( $6 9EE 352)(7 67 *1' =/ 287 (/RDG
EE
,1
^
5 /
/
(/
(5
Any kind of load. In case of IN = high is VOUT VIN - VIN(T+). Due to VGND > 0, no VST = low signal available.
Energy stored in load inductance:
EL = 1/2*L*I L
While demagnetizing load inductance, the energy dissipated in PROFET is
2
GND disconnect with GND pull up
(channel 1/2 or 3/4)
EAS= Ebb + EL - ER= VON(CL)*iL(t) dt,
9 ,1 ,1 9 ,1 ,1 67 9EE 287 352)(7 287 *1'
with an approximate solution for RL > 0 :
EAS=
IL* L (V + |VOUT(CL)|) 2*RL bb
OQ (1+ |V
IL*RL
OUT(CL)|
)
9
9 EE
67
9
Maximum allowable load inductance for a single switch off (one channel)5)
*1'
/
I ,/ Tj,start = 150C, Vbb = 12 V, RL = 0
Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND > 0, no VST = low signal available.
L [mH]
Vbb disconnect with energized inductive load
,1 KLJK ,1 67 9EE 287 352)(7 287 *1'
9
EE
For an inductive load current up to the limit defined by EAS (max. ratings see page 3 and diagram on page 9) each switch is protected against loss of Vbb. Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load the whole load current flows through the GND connection.

IL [A]
Data Sheet
10
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Typ. on-state resistance
; IL = 1.8 A, IN = high RON [mOhm]
Typ. ground pin operating current
VIN = high (one channel on) IGND [mA]
Vbb [V]
Vbb [V]
Typ. standby current
; Vbb = 9...34 V, IN1...4 = low Ibb(off) [A]
Typ. initial short circuit shutdown time
; Vbb =12 V
t off(S C ) [ms ec ] 60
50
40
30
20
10
0 40 -25 0 25 50 75 100 125
Tj [C] Ibb(off) includes four times the current IL(off) of the open load detection current sources.
150 T j, s tart [C]
Data Sheet
11
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Timing diagrams
Timing diagrams are shown for chip 1 (channel 1/2). For chip 2 (channel 3/4) the diagrams are valid too. The channels 1 and 2, respectively 3 and 4, are symmetric and consequently the diagrams are valid for each channel as well as for permuted channels
Figure 1a: Vbb turn on:
,1 ,1 9 EE ,1
Figure 2b: Switching an inductive load,
67
9
287
9
287
9
287
,
L
67 RSHQ GUDLQ W W
Figure 2a: Switching a lamp:
,1
Figure 3a: Turn on into short circuit: shut down by overtemperature, restart by cooling
,1 RWKHU FKDQQHO QRUPDO RSHUDWLRQ
67
,
/
, 9
287
/6&S , /6&U
,
/
W 67 W
RII6&
W
Heating up of the chip may require several milliseconds, depending on external conditions (toff(SC) vs. Tj,start see page 11)
The initial peak current should be limited by the lamp and not by the initial short circuit current IL(SCp) = 7.5 A typ. of the device.
Data Sheet
12
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Figure 3b: Turn on into short circuit: shut down by overtemperature, restart by cooling (two parallel switched channels 1 and 2)
,1
Figure 5a: Open load: detection in OFF-state, turn on/off to open load
,1 ,1 FKDQQHO QRUPDO RSHUDWLRQ
,
/
,
/
, /6&S 9287
, /6&U , / FKDQQHO RSHQ ORDG W 67 RII6& 67 W
td(ST,OL3) depends on external circuitry because of high impedance *) IL = 30 A typ
W
G67 2/
W d(ST OL3) W
Figure 4a: Overtemperature: Reset if Tj ,1
Figure 6a: Undervoltage:
,1
67
9
EE V
bb(under)
9
Vbb(u cp) 9bb(u rst)
287
9 287 7
-
W
67 RSHQ GUDLQ W
Data Sheet
13
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Figure 6b: Undervoltage restart of charge pump
9 RQ 921&/
RIIVWDWH
RQVWDWH
9
EERYHU
9
EEX UVW
9
EER UVW
9 9
EEXQGHU
EEX FS
IN = high, normal load conditions. Charge pump starts at Vbb(ucp) = 5.6 V typ.
Figure 7a: Overvoltage:
,1
9bb
V ON(CL)
Vbb(over)
V bb(o rst)
9
287
67 W
Data Sheet
RIIVWDWH
9 EE
14
Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Package Outlines
2.65 max
0.35 x 45
+0.09
2.45 -0.2
0.2 -0.1
7.6 -0.2 1)
1.27 0.35
+0.15 2)
0.4 +0.8 0.2 24x 20 11 0.1 10.3 0.3
GPS05094
1 12.8 1) 10 -0.2 Index Marking 1) Does not include plastic or metal protrusions of 0.15 max per side 2) Does not include dambar protrusion of 0.05 max per side
Figure 1
PG-DSO-20 (Plastic Dual Small Outline Package) (RoHS-compliant)
Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pbfree finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Please specify the package needed (e.g. green package) when placing an order
You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products. Data Sheet 15
0.23
8 ma x
Dimensions in mm Rev 1.3, 2010-03-16
Smart High-Side Power Switch BTS712N1
Revision History
Version Rev 1.3 Rev 1.2 Date 2010-03-16 2009-07-13 Changes page 6: changed reference to the timing diagram page 1: added new coverpage page 6: Initial short circuit shutdown time changed: toff(SC) -40 C to 48 ms toff(SC) 25 C to 29 ms page 11: changed graphic Creation of the green datasheet. First page : Adding the green logo and the AEC qualified Adding the bullet AEC qualified and the RoHS compliant features Package page Modification of the package to be green.
V1.1
2007-08-30
Data Sheet
16
Rev 1.3, 2010-03-16
Edition 2010-03-16 Published by Infineon Technologies AG 81726 Munich, Germany (c) Infineon Technologies AG 3/16/10. All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of BTS712N110

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X